isolated error - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

isolated error - traduction vers russe

THEOREM
Isolated zeros theorem; Isolated zeroes theorem

isolated error      
одиночная ошибка
observational error         
DIFFERENCE BETWEEN A MEASURED QUANTITY VALUE AND A REFERENCE QUANTITY VALUE
ObservationalError; Measurement error; Experimental error; Systematic bias; Random error; Systematic error; Systemic error; Alleged systemic bias; Random errors; Systematic errors; Measurement errors; Observational Error; Systematic effect; Chance error; Accidental error; Constant error; Stochastic error; Observation error; Systematic and random error; Systematic and random errors; Random and systematic errors; Measurement Error

общая лексика

ошибка наблюдения

systematic bias         
DIFFERENCE BETWEEN A MEASURED QUANTITY VALUE AND A REFERENCE QUANTITY VALUE
ObservationalError; Measurement error; Experimental error; Systematic bias; Random error; Systematic error; Systemic error; Alleged systemic bias; Random errors; Systematic errors; Measurement errors; Observational Error; Systematic effect; Chance error; Accidental error; Constant error; Stochastic error; Observation error; Systematic and random error; Systematic and random errors; Random and systematic errors; Measurement Error

математика

систематическая ошибка

Définition

ляпсус
м.
Ошибка, оговорка, досадный промах (обычно в устной речи и на письме).

Wikipédia

Identity theorem

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ), if f = g on some S D {\displaystyle S\subseteq D} , where S {\displaystyle S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. For example, if D consists of two disjoint open sets, f {\displaystyle f} can be 0 {\displaystyle 0} on one open set, and 1 {\displaystyle 1} on another, while g {\displaystyle g} is 0 {\displaystyle 0} on one, and 2 {\displaystyle 2} on another.

Traduction de &#39isolated error&#39 en Russe